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Abstract—Turn-taking is a fundamental aspect of conversation,
but current Human-Robot Interaction (HRI) systems often rely
on simplistic, silence-based models, leading to unnatural pauses
and interruptions. This paper investigates, for the first time, the
application of general turn-taking models, specifically TarnGPT
and Voice Activity Projection (VAP), to improve conversational
dynamics in HRI. These models are trained on human-human
dialogue data using self-supervised learning objectives, without
requiring domain-specific fine-tuning. We propose methods for
using these models in tandem to predict when a robot should
begin preparing responses, take turns, and handle potential
interruptions. We evaluated the proposed system in a within-
subject study against a traditional baseline system, using the
Furhat robot with 39 adults in a conversational setting, in com-
bination with a large language model for autonomous response
generation. The results show that participants significantly prefer
the proposed system, and it significantly reduces response delays
and interruptions.

Index Terms—turn-taking; conversational AI; large language
model; human-robot interaction

I. INTRODUCTION

Turn-taking is one of the most fundamental aspects of
conversation. Since it is difficult to speak and listen at the
same time, the speakers need to coordinate who is currently
speaking, and when the turn should shift to the other person
[1], [2]. Traditionally, conversational systems, including those
for Human-Robot Interaction (HRI), have relied on a simplistic
model of turn-taking based on heuristics, where the system
waits for a certain amount of silence in the user’s speech before
deciding to take the turn, and only then starts to process the
user’s speech and finally generate a response [3]. However,
since silence alone is not a reliable indicator that a user
is yielding the turn (they may simply pause mid-sentence),
this approach often results in either long response delays or
frequent interruptions, depending on the set silence threshold
[4]. Additionally, because it is difficult to differentiate genuine
interruptions from collaborative overlapping speech, such as
backchannels (e.g., “mhm”, “yeah”), many systems avoid
processing user input while the system is speaking.

This is very different from the sophisticated coordination
of turn-taking in human-human dialogue, where gaps between
turns may be as brief as 0.2 s [5S]. Humans rely on a number
of different coordination cues to determine whether the other
speaker is holding or yielding the turn, including intonation
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[6], [7], fillers (e.g., “uh”, “uhm”), syntactic completeness [8],
gestures [9], and gaze [10], [11]. Furthermore, the listener does
not just wait for a signal to take the turn, they continuously
try to predict (or ‘project’) when the turn is about to end, to
prepare their response in advance [2], [5], [12].

Although there are no systems today that can replicate this
impressive coordination, several studies have shown that it is
possible to develop more sophisticated, data-driven models of
turn-taking in spoken dialogue systems [13]-[15] and HRI
[16]-[18]. However, these models are often trained on a
specific turn-taking problem, using data specific to a particular
domain, typically collected in similar settings. In many cases,
collecting and annotating the data required for training in each
new domain is impractical, especially for HRI.

In this paper, we explore the use of general turn-taking
models for HRI. By ‘general’, we refer to models trained
on larger sets of human-human conversational data using
self-supervised learning objectives (thus avoiding annotation),
without domain-specific fine-tuning. It also means that the
models are generally applicable to identify a broad set of turn-
taking events, including turn-yielding, turn-holding, backchan-
nels, and interruptions. We specifically use two different mod-
els in tandem: TurnGPT [19] and Voice Activity Projection
(VAP) [20]. TurnGPT is a text-based model that incorporates
the syntactic and semantic aspects of turn-taking, including
more long-term pragmatic dependencies in a conversation.
However, it does not consider prosodic or timing aspects.
VAP, on the other hand, is trained purely on audio data, to
continuously predict the dynamics of the conversation.

Although previous studies have demonstrated that these
models are effective at predicting turn-taking in human-human
interactions, their training objective is to forecast what is likely
to occur in the conversation, rather than optimizing specific
behaviors for an agent. Using such a model to guide the
behavior of a conversational agent (such as a robot) is not
trivial. In this paper, we propose a method for achieving this
within an HRI context. We evaluated the proposed system in
a within-subject study, comparing it to a traditional baseline,
utilizing the Furhat robot [21] with 39 adult participants.

Evaluating such models in an HRI setting with users is
important, since more sophisticated turn-taking model might
not necessarily provide a better experience. These general
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models are trained to model the speech activity of humans
with certain conversational dynamics and characteristics. In an
HRI setting, these dynamics might be different, and the speech
from the robot is not natural but synthesized. Furthermore,
the HRI setting involves additional cues, such as gaze, and
may be affected by users adapting their communication style
depending on their mental model of their conversation partner
(i.e., a robot) [22]. If the input to the model is out-of-
distribution, it might result in bad predictions and, thus, bad
input to the robot’s control system. It is also not certain that
humans would prefer to interact with a robot that is more
human-like, and might instead prefer a more traditional (and
perhaps more predictable) turn-taking mechanism.

II. RELATED WORK

There are several aspects of turn-taking that a conversa-
tional agent should consider. One of the key challenges is
distinguishing when the user is holding or yielding the turn,
allowing the agent to respond quickly when the turn is yielded
and avoid interrupting during pauses. The moments when turn
shifts are likely to occur are often called ‘Transition-Relevant
Places’ (TRPs) [2]. Several studies have explored how machine
learning can address this challenge by analyzing verbal and
non-verbal signals [7], [23]-[27]. However, much of this work
reports only prediction performance on corpora, which does
not necessarily translate to real-world performance, where sys-
tems must interact with users in real-time and face processing
constraints. That said, such models have been applied and
evaluated within spoken dialogue systems [13]-[15] and in
human-robot interaction (HRI) contexts [17], [18], [28]. While
some HRI settings are dyadic, they can also involve multiple
users, which makes the problem more challenging, as the robot
also needs to determine whether the users are addressing the
robot or each other [16], [29].

Another turn-taking challenge is identifying moments when
it is appropriate to produce backchannels [3]. Studies have
demonstrated how this can be done both offline with corpora
[30], [31] and online in HRI settings [32], [33]. Backchannel-
inviting cues are similar, though not identical, to TRP cues
[7], and backchannels more commonly occur in overlaps [34].

While dialogue systems can be implemented using a simplex
channel (where only one interlocutor can speak at a time), it is
often desirable to have a duplex channel, enabling the system
to listen while speaking (to hear overlapping speech) [15]. The
most common use case for this is to allow the user to ‘barge-
in’ and interrupt the system mid-speech. However, a common
issue with barge-in is false triggers, caused either by external
noise or coughing, or by the user offering a backchannel
without intending to take the turn. If the system stops speaking
abruptly in such cases, it can lead to confusion, especially
if it cannot resume seamlessly. For duplex systems, it is
therefore essential to have a model that can distinguish genuine
interruptions from collaborative overlapping speech or other
sounds [35]-[38]. If not handled appropriately, allowing for
user interruptions might be detrimental to the user experience
[3], [39], [40], and a simplex system can be preferable.
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Our work is the first to demonstrate how general turn-taking
models can be used to address all these challenges, when
applied to an HRI setting, rather than relying on separate
models for each. Two other aspects also make our approach
novel. First, while many models only make predictions at
specific events (such as when the user becomes silent) [13],
[14], our models are continuous, providing output at every
time step. This enables the system not only to take turns
appropriately but also to plan responses in advance, resolve
interruptions, and handle backchannels effectively. Second, our
models utilize self-monitoring, meaning they account for the
robot’s speech as well as the user’s. This is critical because the
robot’s speech provides context for understanding the user’s
turn-taking cues and allows the system to “reflect” on potential
cues in its own speech [41].

III. GENERAL TURN-TAKING MODELS

In this paper, we use two general turn-taking models:
TurnGPT and VAP that have complementary properties. Both
models are trained on general human-human dialogue datasets
in a self-supervised fashion. This means that they do not
require any manual annotation of the data and can, therefore,
be trained on large datasets. The models have previously been
evaluated offline with human-human conversation datasets that
are either text or speech-based, but have not been applied to
an HRI setting.

A. TurnGPT: Predictions in the Verbal Domain

In the verbal domain, a clear cue for turn-holding is when
an utterance is syntactically incomplete. Obvious instances,
such as “I would like to order a ...” can be readily identified
through part-of-speech tagging [7], [14]. However, in ongoing
dialogue, it is often more relevant to consider pragmatic
completeness, which takes into account the dialogue context
[8]. For example, in the exchange “A: When will you leave?
B: Tomorrow”, B’s response is pragmatically complete, but
only when considered in relation to A’s preceding question.

TurnGPT [19] is a model of syntactic/pragmatic turn com-
pletion, based on the textual representation of the dialogue.
The model is an extension of GPT-2 [42], where a special turn
completion token, <ts>, is included at the end of each turn in
the training data. Similar to any GPT-based language model, it
predicts the next token through a probability distribution over
all tokens in the vocabulary, including <ts>. The probability
assigned to <ts> can thus be regarded as a turn completion
probability. The model used in this paper was trained on
the SODA dataset of 385K text-based conversations [43].
TurnGPT responds in about 20ms (with the GPU used in
this work: 8GB GeForce RTX 2080), which is not feasible
to achieve with bigger models to respond in real time.

Previous work has shown that TurnGPT can model long-
term pragmatic dependencies over several turns [19]. However,
TurnGPT does not model any temporal or prosodic aspects
of the speech signal, and syntactic/pragmatic completeness
alone is not always sufficient to identify the end of a turn.
For example, the utterance “I would like to order a burger
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Fig. 1: Example turn shift from user to robot when using the proposed system. From top to bottom: (1) The user’s actual
speech pattern (in orange), highlighted where the VAP model detects voice activity; (2) ASR transcription; (3) TurnGPT’s
likelihood for the turn to end; (4) Response generation (LLM+TTS); (5) the robot’s actual speech pattern (in blue); (6) robot

gaze (towards user or averted); (7) VAP model predictions.

. with some some fries ... and a milkshake.”, has several
potential completion points. To know whether they constitute
actual turn-yielding points, non-verbal cues are needed.

B. VAP: Predictions in the Acoustic Domain

Voice Activity Projection (VAP) [20] is a transformer-
based model [44] of conversational dynamics based purely on
acoustic input. The model objective is to continuously (e.g.,
10 times per second) predict (or ‘project’) the upcoming voice
activity of both speakers in a dialogue, in a 2-second future
time window, based on the past 30 s of spoken dialogue. The
model learns to predict complex turn-taking phenomena, such
as turn-shifts, backchannels, and resolution of interruptions
[20]. The model input is a raw waveform, which does not have
the delay associated with models requiring speech recognition
output (such as TurnGPT). In this paper, we use a version of
the model [45] that takes in a stereo waveform (one channel
for the user’s speech and one for the robot’s own speech).

In this work, we used a VAP model trained on subsets of
the Fisher Part 1 and Switchboard corpora [46], [47], both
of which consist of recorded telephone conversations between
U.S. speakers, totaling approximately 1,000 hours of dialogue.
These corpora are also gender-balanced.

Following [45], we use a simplified representation of the
output, resulting in two values: p, ., Which predicts the most
likely speaker in the next 0-600 ms window, and pfyture,
which predicts the most likely speaker in the 600-2000 ms
window following that.

An example of these predictions, when the model is applied
to HRI, can be seen in Figure 1. In the first pause, after the
initial “so ...”, both py,4, and pryiure predict that the user will
continue. When the user’s turn is about to end (“...favorite
movies”), both predictions shift to the robot, already before
the robot has started to speak, where pyytyre Teacts slightly
earlier than p,,,,,. When the robot makes a pause towards the
end (before “How about you?”), p.,.., predicts a potential short
speech activity from the user, while pyyiyre seems to favor

the robot continuing to speak. This can be interpreted as an
invitation to give a brief response, such as a backchannel.

Since the VAP model is trained end-to-end on raw audio,
it is not clear what turn-taking cues it has learned to pick up.
However, previous work has shown that the model is sensitive
to subtle prosodic cues [48] and to fillers [49]. While it is also
possible that the model has learned to pick up certain verbal
cues, even though there is no explicit speech-to-text objective
involved, it is not likely that it can make use of more long-term
pragmatic completion cues (which TurnGPT can).

While TurnGPT and VAP offer complementary capabilities,
they cannot be easily combined. The number of conversations
in the spoken dataset (about 10K) used to train VAP is not
enough to train an LLM such as TurnGPT (which was trained
with 385K text-based conversations), and the text datasets
cannot be used to train a speech model like VAP. We therefore
propose to use VAP and TurnGPT together, in tandem.

IV. BASELINE SYSTEM

To apply the proposed system to HRI, we used the Furhat
robot [21], a human-like robot head featuring an animated
face projected onto a semi-translucent mask, along with a
mechanical neck, as seen in Figure 5. This robot platform
was selected for its expressiveness, which includes facial
expressions, lip movements, gaze behavior, and head gestures.

As a baseline to compare our proposed turn-taking system
with, we use the standard turn-taking mechanism used in
the Furhat software. This mechanism is very similar to most
traditional spoken dialogue systems, including many deployed
systems [3]. In order to make this version as good as possible,
given the absence of any turn-taking model, we incorporated
additional elements, such as gaze aversion and a LED signal,
to offer turn-taking cues that allow for a more balanced
comparison with our proposed model.

A. Baseline Turn-taking Mechanism

Figure 2 illustrates a turn-shift from user to robot. For Au-
tomatic Speech Recognition (ASR), we use Google’s Speech-
to-Text service. Audio from the microphone is streamed to
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Fig. 2: Example turn shift from user to robot with the baseline.

the ASR, which also determines the end-of-speech. Although
the algorithm behind Google’s end-of-speech detection is not
documented, it is likely based on a silence threshold, since it
is fairly constant in length. At the end-of-speech, the speech
recognition result is used to build a large language model
(LLM) prompt, which is sent to OpenAl gpt-3.5-turbo, hosted
by Microsoft Azure.

The result from the LLM (the robot’s response) is sent to
the text-to-speech (TTS), and the audio is played back to the
user. In order to have a human-like robot voice to allow for
a natural HRI, ElevenLabs! TTS was used, with the voice
‘Jennifer’. We used the streaming version of the ElevenLabs
API, resulting in a fairly constant processing delay (around
1 ), regardless of the length of the utterance to produce. As
visible in Figure 2, the total response time (measured from the
actual point where the user stopped speaking until the robot
starts speaking) is almost 2.5 s in this example, though it can
vary depending on the processing delay of the LLM and TTS.

The standard Furhat software does not support user inter-
ruptions (‘barge-in’). As discussed earlier, allowing for user
interruptions can easily lead to confusion if not modeled
appropriately. Thus, in the absence of any turn-taking model
for the baseline system, we followed this design choice.
However, to make it clear to the user when the robot was
listening, similar to [50], we implemented both a gaze aversion
mechanism (see next section), and used the robot’s LED at
the base to signal its listening status, turning it red when not
listening, and off otherwise, as illustrated in Figure 2 and seen
in Figure 5. This was clearly communicated to the participants
during evaluation through a demonstration video.

B. Non-verbal Robot Behavior

We adopted a gaze aversion strategy as a turn-taking signal
in which the robot looks at a random diagonal away from the
user when it starts to generate a response after identifying a
turn shift, as shown in Figure 2. In addition, we added gaze
aversion at every pause within the robot’s utterance to signal
that the turn had not yet been yielded.

To improve the consistency of the responses, we used
dynamic facial expressions with an LLM, similar to [51]. At
the onset of the robot’s speech, numbered anchor points were
inserted in the text at phrase boundaries. LLM was then asked

Thttps://elevenlabs.io/text-to-speech
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to insert suitable facial expressions at each anchor point, based
on the list of available expressions in the Furhat SDK. This
was done asynchronously so as not to add any further delays.

V. PROPOSED TURN-TAKING SYSTEM

In the proposed system, we use the two general turn-taking
models described in Section III. The models are trained to
make predictions as third-party observers of a conversation
between two speakers. Thus, it is not enough to include these
models on the input side of the dialogue system, we also need
to feed the TTS output (audio) back to the VAP model and the
resulting dialogue history to TurnGPT, as shown in Figure 3.
This ‘self-monitoring’ is an important new aspect of the
dialogue system architecture, as traditional spoken dialogue
systems typically never analyze their own spoken output.

Since the models are not trained to optimize a certain
behavior, and we are not fine-tuning the models against some
domain-specific dataset, but rather use them in a ‘zero-shot’
fashion, the behavior of the agent will depend on a number of
(fairly arbitrary) hyper-parameters. Their current values were
tuned through four pilot experiments, but they can likely be
optimized further in future work. The complete pseudo-code
for the turn-taking algorithm and the values for the hyper-
parameters are given in Appendix A.

LLM Facial expr.

Fig. 3: System architecture. New components in proposed
system shown in green.

A. Identifying the End of the User’s Turn

Figure 1 shows how a user-robot turn shift is handled by
the proposed system. We use the streaming results from the
ASR, which are sent to TurnGPT, and the audio from the two
channels are analyzed by VAP in real time. The output of
the two models is then used to determine whether the user
has yielded the turn or not. After the initial “So...”, TurnGPT
assigns a probability of 0.0 for a turn shift, and the VAP
model favors the user throughout the long pause. With the
baseline system, the user would have been interrupted since the
silence length threshold would have been triggered. TurnGPT
then continues to assign low turn-shift probabilities until the
words “favorite” and “movies”, which both constitute potential
completion points. Here, the VAP model also indicates the
end of the turn. After both p,,., and pfyiure have favored the
user for at least 0.5 s, a turn-shift is allowed (which does not
necessarily mean that it is ready to speak yet).

Neither of the models makes perfect predictions. The VAP
model, for example, sometimes fails to identify turn yielding
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moments. Thus, even if VAP continues to favor the user, a
timeout is used to determine when the robot is allowed to
start speaking, depending on the turn-shift probability from
TurnGPT, where the maximum timeout was set to 3 s.

In ideal circumstances, this algorithm allows the user to
pause for up to 3 s, while the robot may be able to take the
turn with just 0.5 s response delay.

B. Preparing a Response

While the system can respond 0.5 s after the user has
finished speaking, this is typically not enough time to receive
the most complete ASR result, as well as the results from the
LLM and TTS. Similar to how humans manage turn-taking
[2], [5], [12], the system should start to prepare a tentative
response before the interlocutor is done speaking.

While it is possible to start preparing a tentative response for
each new incremental ASR result, we try to reduce compute
by only doing this if either the turn-shift probability (according
to TurnGPT) is 0.2 or higher, or 0.2 s has passed since the
previous incremental result. This can be seen in Figure 1,
where the LLM and TTS start to prepare responses after
the words “So”, “favorite” and “movies”. As soon as a new
tentative response generation is being initiated, any ongoing
LLM or TTS requests are canceled.

In order to avoid generating new tentative responses based
on very similar input, the current user utterance is also
compared to the previous user utterance used to generate
the last tentative response. This comparison is done using a
sentence embedding model? comparing the semantic similarity
between the two user utterances. If it is 0.8 or higher, no new
response is generated. Using the example from Figure 1, the
ASR outputs “so”, “so, do you have any favorite”, and “so,
do you have any favorite movies” are all dissimilar enough
to warrant new response generation. However, if the user had
added “so, do you have any favorite movies you like”, the
similarity would have been sufficient to avoid generating a
new response. This allows the system to sometimes have a
response ready within the minimum response time of 0.5 s.

This processing of incremental ASR results could poten-
tially have been added to the baseline system as well. However,
without any turn-taking model, this would only have resulted
in shorter response times in general, with an increased risk of
interrupting the user.

C. Handling Interruptions and Backchannels

As discussed above, handling user interruptions can be
challenging unless the robot has a turn-taking model that can
distinguish between genuine interruptions (where the robot
should stop speaking) and brief backchannels or collaborative
overlaps (where the robot should continue). This distinction
has to be made already at the onset of the user’s speech, so
that the robot can make the decision fast enough. Since the
VAP model is trained to make predictions about upcoming
speech activity in conversation, it has learned to make this

2The ‘all-MiniLM-L6-v2’ model from Sentence Transformers (sbert.net).
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distinction [20], and we therefore added the handling of user
interruptions to the proposed turn-taking system.

An example is shown in Figure 4: As the user starts to say
“oh that is really cool”, the VAP model predicts (both p,,4q
and pryiure) that the turn should shift to the user. At this
point, the robot stops speaking at the next word boundary,
and the final part of the planned utterance (“... it was such a
rush”) is never spoken. When the user’s turn ends, the robot
produces a new response according to the general turn-taking
scheme. However, when the dialogue history is sent to the
LLM to generate the next response, the system needs to keep
track of where it stopped speaking, so that only the parts of
the utterance that were actually spoken are included in the
prompt. This also makes it possible for the robot to resume
speaking the abandoned utterance, if appropriate.

Figure 4 shows the handling of a user backchannel (“yeah”).
At this point, p,,, favors the user, i.e., the model predicts that
the user might continue saying something in the near future.
However, pyiure favors the robot, indicating that whatever the
user is about to say, it is likely very brief, and the robot should
continue speaking. Thus, since not both predictions favor the
user, the robot will continue to speak.

The VAP model can potentially also be used to predict suit-
able places for the robot to give backchannels [20]. This would
be places where pyo., favors the robot and p fyiure favors the
user. However, we decided not to include backchannels from
the robot in the version of the system that we evaluated here.
This is because we do not have a good technique for quickly
synthesizing backchannels that are appropriate in context and
coherent with the TTS used for the general robot utterances.

D. Self-monitoring and Dynamic Gaze Aversion

In the proposed system, we did not use the LED to signal the
robot’s turn-taking state, as we aimed to rely solely on more
human-like turn-taking cues, reflecting the fact that the robot
was always listening, even when talking. We also adjusted
the robot’s gaze aversion to be more dynamic, using the VAP
model. As discussed in Section IV-B, for the baseline version,
we simply averted the gaze in every pause that the robot made,
so that it would be clear to the user that the robot is holding
the turn. However, it is also possible that the TTS already
expresses this turn-holding cue through its prosody (such as
a flat pitch), in which case the robot does not need to avert
the gaze. While we cannot control the prosody of the TTS, the
VAP model can analyze the robot’s own speech to inform such
decisions [41]. Figure 1 shows an example of this, where the
VAP model predicts that the turn is not yielded after “I am a
huge fan of action movies”, but that it could be ‘accidentally’
yielded after “especially ones with epic adventure scenes!”.
Thus, the robot does not need to avert the gaze in the first
pause, but should do it in the second pause.

VI. EVALUATION

While creating human-level turn-taking systems is the even-
tual goal, speech latencies of current systems (LLM and TTS)
are not comparable to a human (0.2 s), in addition to humans
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being better at adapting their conversations (e.g., speaking
rate, content, style). Thus, comparing the systems to a human
baseline would introduce confounds, making it difficult to
isolate the system’s performance. We therefore evaluated the
turn-taking systems in comparison to each other with a within-
subject design in an HRI study with 39 participants. A 2
(ordering) x 2 (scenario) design was conducted, where each
participant consecutively interacted for 7 minutes with both
systems, each with a different scenario.

The experiment took 1.5 hours per participant. Participant
demographics (nationality, gender, age group, and prior ex-
perience with robots) were counterbalanced between the four
conditions through stratified random assignment to ensure that
both the order of the system interaction and the scenario
associated with each system were evenly distributed.

A. Participants

A minimum of 0.80 power with medium effect size (f =
0.25) and o = 0.05 required 34 participants in a 2x2 within-
subject design (calculated by G*Power). Thus, we recruited 39
native English speakers (power= 0.86) via university channels,
social media, and word-of-mouth.

Participants were between 20 and 73 years old (M=40,
SD=14.3) with no speech or hearing impairments. 24 were
female, 12 male, and 3 non-binary. 23 had prior experience
with robots. Further demographics are given in Appendix B.

Participants signed a consent form for audio and video
recording, with data-sharing options for anonymity. The study
was reviewed and endorsed by the university’s research ethics
and data officers.

B. Scenarios

Conversation topics and cognitive load can impact response
time, with open-ended questions requiring longer responses
than yes/no questions [52]-[54]. To assess if both systems
can handle long pauses or hesitations in speech, we used
two ethical dilemmas that required participants to think and
increased cognitive load by asking personal questions.

The dilemmas included: (1) a human-centered dilemma on
the ethics of lying (with the robot named Alice) and (2) a

T T

Fig. 4: Example of a user interruption and backchannel.
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Fig. 5: The setting for the evaluation, showing
the red LED lights used in the baseline condi-
tion to indicate that the robot is not listening.

robot-centered dilemma based on Asimov’s Laws, addressing
disobedience and privacy (named Clara). These scenarios
balanced human and robot contexts to account for participants’
willingness or reluctance to share personal information with
robots and the participants’ (un)familiarity with robots.

For both dilemmas, 10 example questions were written in
the LLM prompt, e.g., Alice: “What if telling the truth might
hurt someone’s feelings, like commenting on their appear-
ance?” and Clara: “Should I override commands in emergency
situations or when the command could cause harm?”. The
LLM was instructed to follow up with questions to maintain
the conversation. In the human-focused dilemma, the LLM en-
couraged sharing personal memories, while the robot-focused
scenario avoided extra cognitive load since situations involving
robots may be unfamiliar due to the lack of robots in everyday
life. The LLM was also prompted to respond briefly in an
approachable and friendly style. LLM prompts are provided
in Appendix C.

C. Procedure

Participants were informed they would interact with the
robot twice, for 7 minutes each, with robots having a dif-
ferent interaction style and topic. The interaction styles were
explained before each interaction:

e Proposed: “You can talk with this robot as if you would

talk to a human. You can interrupt the robot anytime.”

e Baseline: “This robot has a red light underneath to signal
that it is not listening. You will not be able to interrupt
it while it is on. So, only speak when there is no light.”

Demonstration: Before each interaction, participants were
also shown a I-minute demonstration video, featuring an
ethical dilemma on the ‘uncanny valley’. For the proposed
system, the researcher in the video demonstrated that it was
possible to interrupt the robot and that it was possible to
make longer pauses. For the baseline system, the researcher
demonstrated that it was not possible to interrupt the robot
while the red light was on and that longer pauses could result
in the robot interrupting them.

Interaction: To avoid the need for echo cancellation and
to get a clear recording, a headset with a close-talking mi-
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TABLE I: Response times and interruption rates.

Response time (s) Interruption
Mean  Median Mode rate
Proposed L5 1.5 0.6 6.9%
Baseline 2.2 2.7 2.6 16.6%
200 Proposed

Baseline

Frequency
=
o
o

<0 0.0 025 05 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 >3.5
Gap Length (s)

Fig. 6: Histogram of response times.

crophone was used for interaction (Figure 5). The interaction
began with a pre-scripted greeting and ended after 7 minutes
with a pre-scripted closure. The rest of the interaction was
fully autonomous, with responses generated by the LLM. The
researcher was not in the room.

Questionnaire: After each interaction, the participants filled
out a questionnaire with Likert scale questions, ranging from
1 (strongly disagree) to 7 (strongly agree). The questionnaire
was developed based on the HRI and HCI literature [50], [55],
[56], with sections for (A) conversational dynamics (Figure 7),
(B) user enjoyment, (C) privacy and ethical concerns, and
(D) additional (open-ended) feedback. Only conversational
dynamics questions are analyzed and reported in this paper.
Each section also included a robot preference question and an
open-ended question on the reasoning behind their preference.

Annotation: It is challenging to automatically identify inter-
ruptions, since they are subjective in nature [57]. Therefore,
an annotation system was developed to evaluate them from the
participant’s perspective, after interacting with the robot. The
interface was similar to the top part of Figure 4, with only
user audio (in orange) and robot audio (in blue), where the
participant could play back the dialogue audio and mark in-
terruptions. Participants were asked to annotate when they felt
the robot “did not let them speak”. They marked interruptions
(either the robot speaking over them or them stopping speaking
- due to red light) but were instructed not to mark backchannels
or natural transitions if they did not feel interrupted.

Debriefing: After the study, the participants were briefed in
more detail about the study and the robot, and received a copy
of their consent form and a gift card (equivalent to $20).

VII. RESULTS
A. Response Time and Interruption Rate

Two commonly used metrics to assess turn-taking perfor-
mance in conversational systems are response time (or ‘gap
length’, floor transfer offset’) and interruption rate (or ‘cut-
in rate’) [13], [24], [58]. Response time measures the time
interval between the user’s completion of a turn and the sys-
tem’s response, when there is no interruption. Interruption rate
represents the proportion of system turns that interrupt the user
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while they are speaking. These metrics often involve a trade-
off, particularly when a silence threshold is used: reducing
the response time tends to increase the interruption rate, as
the system may take over during a user’s pause. To calculate
these metrics, we automatically identified turns and turn shifts
in the dialogue, classifying system turns as interruptions or
non-interruptions based on the manual annotations provided
by the participants. Response time was determined from the
recordings by measuring the time between when the user
stopped speaking and the onset of the robot’s speech.

A histogram of response times is shown in Figure 6 and
summary statistics in Table I. The median response time for
the proposed system is much shorter (1.5 s vs 2.7 s; Wilcoxon
signed-rank test; W = 776; p < 0.001). For the baseline, there
is a peak at 2.6 s, which is close to the expected response
time, given a silence threshold of 1 s, LLM response time
of 0.5 s, and a TTS delay of 1 s. There are also instances
of shorter response times (even a few negative ones), which
might intuitively seem impossible to achieve with the baseline
system. However, at a closer look, these constitute instances
where the system has detected the end-of-turn and started
to generate a response, but where the user still continues to
speak for a bit. While these instances might, in many cases,
be marked as interruptions (and would thus be excluded from
the response time statistics), there are clearly also cases where
they are not perceived as interruptions.

For the proposed system, there is a peak at 0.6 s, which
is close to the minimum allowed response time of 0.5 s.
If the system has a response prepared and either VAP or
TurnGPT predicts that the turn is yielded, it can in many cases
achieve this fast response time. Of course, there are also many
instances where this is not the case, for example, where the
VAP model did not detect a turn yield but where one of the
longer TurnGPT fallback thresholds were used instead. Also,
since it takes around 1.5 s to generate a response (LLM+TTS),
there are likely many instances where the system predicts a
turn yield, but where a response is not yet ready. In fact, the
histogram has a second peak around this time. If faster LLM
and TTS models are used, this response time can be improved
further. A third peak in the histogram can be seen around 3 s,
which is the maximum response time allowed if both VAP and
TurnGPT fail to detect any turn yield. Thus, there is clearly
some room for further improvement of these models.

While the proposed system had a much shorter response
time, it also had a substantially lower interruption rate
(Wilcoxon signed-rank test; W = 601; p < 0.001), as shown
in Table I. This indicates that the proposed system is much
better at distinguishing pauses where the user is holding the
turn from signals to yield the turn.

B. Questionnaire

The users’ ratings for the turn-taking related questions in the
questionnaire, before and after listening to the interaction, are
shown in Figure 7. A reliability analysis yielded a Cronbach’s
alpha of 0.8 across the 7 items, suggesting that they reliably
measure a cohesive construct related to turn-taking behavior.
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Fig. 7: Answers to the questionnaire. Significance levels in-
dicate Bonferroni-corrected Wilcoxon signed-rank tests (*p <
0.05, **p < 0.01, ***p < 0.001.). See Appendix D for details.

For Q1-Q7, a Wilcoxon signed-ranked test was conducted
to compare the two conditions, using Bonferroni correction.
The users rated the proposed system as more fluent, more
human-like, less prone to interrupt, more interruptable, and
requiring less effort, compared to the baseline. The only
question which did not have a significant difference was the
perceived response delay (“The robot was slow to respond”),
which is interesting given that the proposed system objectively
often had much shorter response delays.

As shown in Figure 7, there was a significantly strong
preference for the proposed system (Q8: p < 0.001), although
9 out of the 39 participants indicated a preference for the
baseline and 3 had no preference. The proposed model was
preferred due to better flow and more natural, human-like
conversations, as reported in open-ended responses (22 vs. 4).
Complaints about the baseline included less time to speak and
a greater need to rush responses (14), distracting red light (4),
more interruptions (8 vs. 2 for the baseline), and interruptions
being stressful (6). However, some preferred the baseline since
the red light helped pace the conversation (6), and it felt more
natural to be interrupted (3).

We also compared all ratings across the two scenarios (Clara
vs. Alice) and the order of the interactions using a Wilcoxon
test, showing no significant effects of these factors.

VIII. DISCUSSION

Overall, the general models seem to be good at distinguish-
ing turn-holding and turn-yielding cues from the participants.
This is quite impressive, given that the VAP model had
been trained on telephone human-human dialogue and not
on face-to-face human-robot interactions. It is likely that the
predictions would be even better if the data came from a more
similar setting. The recorded videos indicate that it would be
beneficial to utilize the user’s gaze or other visual cues as input
to the model to determine user’s willingness to take or yield
the turn. Recent work has shown the feasibility of including
such cues for VAP [26]. In addition, for many HRI settings,
multi-party interaction is important, and while domain-specific
multi-party turn-taking models have been developed [16], [29],
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there does not exist any general multi-party models, trained
and applied in a similar way as in this paper.

To achieve fast response times, it is not enough to have
a turn-taking model that can determine when the robot is
allowed to speak, it must also have something ready to say,
which is limited by the processing time of the LLM and TTS.
Thus, to further reduce response delays, various techniques can
be explored to prepare responses ahead of time. In this paper,
we proposed a novel but simple strategy where the semantic
similarity of the incremental ASR results are compared to
decide when new responses need to be generated. Another
extension would be to project how the user’s utterances are
likely to unfold. For this, TurnGPT can be used to roll out
different potential futures [19], [58]. Another option is to
produce fillers or other non-committing response prefixes [59].

The scenarios used in our evaluation were selected because
they are challenging from a turn-taking perspective, due to
long pauses. However, it would also be interesting to evaluate
other HRI scenarios where the user has more initiative. The
fact that the robot had most of the initiative could help explain
why the participants did not perceive the baseline as being
particularly slow to respond, as it might seem natural to take
some time to come up with the next question.

Some users still preferred the baseline, partly mentioning
the LED light as a positive factor (while others found it dis-
tracting). Considering individual preferences will be important
for future work. A combination of these features could also
be a solution, such as the proposed system with the LED light
(or other non-humanlike cues).

IX. CONCLUSION

We have presented, to our knowledge, the first HRI system
and user study that involves general, continuous turn-taking
models accounting for both verbal and acoustic turn-taking
cues. The models are general, in that they have been trained
in a self-supervised fashion (i.e., without any additional an-
notations) on human-human dialogue data. The models are
continuous, in that they make predictions at every timestep,
accounting for temporal aspects such as pause length. Another
novel aspect is that the models are based on self-monitoring,
which means that the robot’s own speech provides context
for identifying turn-taking events. We presented an algorithm
of how these models can be used in an HRI system, with a
few tunable hyper-parameters. Our study with 39 participants
showed that, compared to a more traditional baseline system,
using a fixed silence threshold and explicit turn-taking cues in
the form of an LED, the proposed system significantly reduces
both response delays and interruption rate. Participants also
expressed a significant preference for our system.
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