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Abstract—Turn-taking is a fundamental aspect of conversation, 
but current Human-Robot Interaction (HRI) systems often rely 
on simplistic, silence-based models, leading to unnatural pauses 
and interruptions. This paper investigates, for the first time, the 
application of general turn-taking models, specifically TurnGPT 
and Voice Activity Projection (VAP), to improve conversational 
dynamics in HRI. These models are trained on human-human 
dialogue data using self-supervised learning objectives, without 
requiring domain-specific fine-tuning. We propose methods for 
using these models in tandem to predict when a robot should 
begin preparing responses, take turns, and handle potential 
interruptions. We evaluated the proposed system in a within-
subject study against a traditional baseline system, using the 
Furhat robot with 39 adults in a conversational setting, in com-
bination with a large language model for autonomous response 
generation. The results show that participants significantly prefer 
the proposed system, and it significantly reduces response delays 
and interruptions. 

Index Terms—turn-taking; conversational AI; large language 
model; human-robot interaction 

I. INTRODUCTION 

Turn-taking is one of the most fundamental aspects of 
conversation. Since it is difficult to speak and listen at the 
same time, the speakers need to coordinate who is currently 
speaking, and when the turn should shift to the other person 
[1], [2]. Traditionally, conversational systems, including those 
for Human-Robot Interaction (HRI), have relied on a simplistic 
model of turn-taking based on heuristics, where the system 
waits for a certain amount of silence in the user’s speech before 
deciding to take the turn, and only then starts to process the 
user’s speech and finally generate a response [3]. However, 
since silence alone is not a reliable indicator that a user 
is yielding the turn (they may simply pause mid-sentence), 
this approach often results in either long response delays or 
frequent interruptions, depending on the set silence threshold 
[4]. Additionally, because it is difficult to differentiate genuine 
interruptions from collaborative overlapping speech, such as 
backchannels (e.g., “mhm”, “yeah”), many systems avoid 
processing user input while the system is speaking. 

This is very different from the sophisticated coordination 
of turn-taking in human-human dialogue, where gaps between 
turns may be as brief as 0.2 s [5]. Humans rely on a number 
of different coordination cues to determine whether the other 
speaker is holding or yielding the turn, including intonation 

[6], [7], fillers (e.g., “uh”, “uhm”), syntactic completeness [8], 
gestures [9], and gaze [10], [11]. Furthermore, the listener does 
not just wait for a signal to take the turn, they continuously 
try to predict (or ‘project’) when the turn is about to end, to 
prepare their response in advance [2], [5], [12]. 

Although there are no systems today that can replicate this 
impressive coordination, several studies have shown that it is 
possible to develop more sophisticated, data-driven models of 
turn-taking in spoken dialogue systems [13]–[15] and HRI 
[16]–[18]. However, these models are often trained on a 
specific turn-taking problem, using data specific to a particular 
domain, typically collected in similar settings. In many cases, 
collecting and annotating the data required for training in each 
new domain is impractical, especially for HRI. 

In this paper, we explore the use of general turn-taking 
models for HRI. By ‘general’, we refer to models trained 
on larger sets of human-human conversational data using 
self-supervised learning objectives (thus avoiding annotation), 
without domain-specific fine-tuning. It also means that the 
models are generally applicable to identify a broad set of turn-
taking events, including turn-yielding, turn-holding, backchan-
nels, and interruptions. We specifically use two different mod-
els in tandem: TurnGPT [19] and Voice Activity Projection 
(VAP) [20]. TurnGPT is a text-based model that incorporates 
the syntactic and semantic aspects of turn-taking, including 
more long-term pragmatic dependencies in a conversation. 
However, it does not consider prosodic or timing aspects. 
VAP, on the other hand, is trained purely on audio data, to 
continuously predict the dynamics of the conversation. 

Although previous studies have demonstrated that these 
models are effective at predicting turn-taking in human-human 
interactions, their training objective is to forecast what is likely 
to occur in the conversation, rather than optimizing specific 
behaviors for an agent. Using such a model to guide the 
behavior of a conversational agent (such as a robot) is not 
trivial. In this paper, we propose a method for achieving this 
within an HRI context. We evaluated the proposed system in 
a within-subject study, comparing it to a traditional baseline, 
utilizing the Furhat robot [21] with 39 adult participants. 

Evaluating such models in an HRI setting with users is 
important, since more sophisticated turn-taking model might 
not necessarily provide a better experience. These general 
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models are trained to model the speech activity of humans 
with certain conversational dynamics and characteristics. In an 
HRI setting, these dynamics might be different, and the speech 
from the robot is not natural but synthesized. Furthermore, 
the HRI setting involves additional cues, such as gaze, and 
may be affected by users adapting their communication style 
depending on their mental model of their conversation partner 
(i.e., a robot) [22]. If the input to the model is out-of-
distribution, it might result in bad predictions and, thus, bad 
input to the robot’s control system. It is also not certain that 
humans would prefer to interact with a robot that is more 
human-like, and might instead prefer a more traditional (and 
perhaps more predictable) turn-taking mechanism. 

II. RELATED WORK 

There are several aspects of turn-taking that a conversa-
tional agent should consider. One of the key challenges is 
distinguishing when the user is holding or yielding the turn, 
allowing the agent to respond quickly when the turn is yielded 
and avoid interrupting during pauses. The moments when turn 
shifts are likely to occur are often called ‘Transition-Relevant 
Places’ (TRPs) [2]. Several studies have explored how machine 
learning can address this challenge by analyzing verbal and 
non-verbal signals [7], [23]–[27]. However, much of this work 
reports only prediction performance on corpora, which does 
not necessarily translate to real-world performance, where sys-
tems must interact with users in real-time and face processing 
constraints. That said, such models have been applied and 
evaluated within spoken dialogue systems [13]–[15] and in 
human-robot interaction (HRI) contexts [17], [18], [28]. While 
some HRI settings are dyadic, they can also involve multiple 
users, which makes the problem more challenging, as the robot 
also needs to determine whether the users are addressing the 
robot or each other [16], [29]. 

Another turn-taking challenge is identifying moments when 
it is appropriate to produce backchannels [3]. Studies have 
demonstrated how this can be done both offline with corpora 
[30], [31] and online in HRI settings [32], [33]. Backchannel-
inviting cues are similar, though not identical, to TRP cues 
[7], and backchannels more commonly occur in overlaps [34]. 

While dialogue systems can be implemented using a simplex 
channel (where only one interlocutor can speak at a time), it is 
often desirable to have a duplex channel, enabling the system 
to listen while speaking (to hear overlapping speech) [15]. The 
most common use case for this is to allow the user to ‘barge-
in’ and interrupt the system mid-speech. However, a common 
issue with barge-in is false triggers, caused either by external 
noise or coughing, or by the user offering a backchannel 
without intending to take the turn. If the system stops speaking 
abruptly in such cases, it can lead to confusion, especially 
if it cannot resume seamlessly. For duplex systems, it is 
therefore essential to have a model that can distinguish genuine 
interruptions from collaborative overlapping speech or other 
sounds [35]–[38]. If not handled appropriately, allowing for 
user interruptions might be detrimental to the user experience 
[3], [39], [40], and a simplex system can be preferable. 

Our work is the first to demonstrate how general turn-taking 
models can be used to address all these challenges, when 
applied to an HRI setting, rather than relying on separate 
models for each. Two other aspects also make our approach 
novel. First, while many models only make predictions at 
specific events (such as when the user becomes silent) [13], 
[14], our models are continuous, providing output at every 
time step. This enables the system not only to take turns 
appropriately but also to plan responses in advance, resolve 
interruptions, and handle backchannels effectively. Second, our 
models utilize self-monitoring, meaning they account for the 
robot’s speech as well as the user’s. This is critical because the 
robot’s speech provides context for understanding the user’s 
turn-taking cues and allows the system to “reflect” on potential 
cues in its own speech [41]. 

III. GENERAL TURN-TAKING MODELS 

In this paper, we use two general turn-taking models: 
TurnGPT and VAP that have complementary properties. Both 
models are trained on general human-human dialogue datasets 
in a self-supervised fashion. This means that they do not 
require any manual annotation of the data and can, therefore, 
be trained on large datasets. The models have previously been 
evaluated offline with human-human conversation datasets that 
are either text or speech-based, but have not been applied to 
an HRI setting. 

A. TurnGPT: Predictions in the Verbal Domain 

In the verbal domain, a clear cue for turn-holding is when 
an utterance is syntactically incomplete. Obvious instances, 
such as “I would like to order a ...” can be readily identified 
through part-of-speech tagging [7], [14]. However, in ongoing 
dialogue, it is often more relevant to consider pragmatic 
completeness, which takes into account the dialogue context 
[8]. For example, in the exchange “A: When will you leave? 
B: Tomorrow”, B’s response is pragmatically complete, but 
only when considered in relation to A’s preceding question. 

TurnGPT [19] is a model of syntactic/pragmatic turn com-
pletion, based on the textual representation of the dialogue. 
The model is an extension of GPT-2 [42], where a special turn 
completion token, <ts>, is included at the end of each turn in 
the training data. Similar to any GPT-based language model, it 
predicts the next token through a probability distribution over 
all tokens in the vocabulary, including <ts>. The probability 
assigned to <ts> can thus be regarded as a turn completion 
probability. The model used in this paper was trained on 
the SODA dataset of 385K text-based conversations [43]. 
TurnGPT responds in about 20ms (with the GPU used in 
this work: 8GB GeForce RTX 2080), which is not feasible 
to achieve with bigger models to respond in real time. 

Previous work has shown that TurnGPT can model long-
term pragmatic dependencies over several turns [19]. However, 
TurnGPT does not model any temporal or prosodic aspects 
of the speech signal, and syntactic/pragmatic completeness 
alone is not always sufficient to identify the end of a turn. 
For example, the utterance “I would like to order a burger 
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Fig. 1: Example turn shift from user to robot when using the proposed system. From top to bottom: (1) The user’s actual 
speech pattern (in orange), highlighted where the VAP model detects voice activity; (2) ASR transcription; (3) TurnGPT’s 
likelihood for the turn to end; (4) Response generation (LLM+TTS); (5) the robot’s actual speech pattern (in blue); (6) robot 
gaze (towards user or averted); (7) VAP model predictions. 

... with some some fries ... and a milkshake.”, has several 
potential completion points. To know whether they constitute 
actual turn-yielding points, non-verbal cues are needed. 

B. VAP: Predictions in the Acoustic Domain 

Voice Activity Projection (VAP) [20] is a transformer-
based model [44] of conversational dynamics based purely on 
acoustic input. The model objective is to continuously (e.g., 
10 times per second) predict (or ‘project’) the upcoming voice 
activity of both speakers in a dialogue, in a 2-second future 
time window, based on the past 30 s of spoken dialogue. The 
model learns to predict complex turn-taking phenomena, such 
as turn-shifts, backchannels, and resolution of interruptions 
[20]. The model input is a raw waveform, which does not have 
the delay associated with models requiring speech recognition 
output (such as TurnGPT). In this paper, we use a version of 
the model [45] that takes in a stereo waveform (one channel 
for the user’s speech and one for the robot’s own speech). 

In this work, we used a VAP model trained on subsets of 
the Fisher Part 1 and Switchboard corpora [46], [47], both 
of which consist of recorded telephone conversations between 
U.S. speakers, totaling approximately 1,000 hours of dialogue. 
These corpora are also gender-balanced. 

Following [45], we use a simplified representation of the 
output, resulting in two values: pnow, which predicts the most 
likely speaker in the next 0-600 ms window, and pfuture, 
which predicts the most likely speaker in the 600-2000 ms 
window following that. 

An example of these predictions, when the model is applied 
to HRI, can be seen in Figure 1. In the first pause, after the 
initial “so ...”, both pnow and pfuture predict that the user will 
continue. When the user’s turn is about to end (“...favorite 
movies”), both predictions shift to the robot, already before 
the robot has started to speak, where pfuture reacts slightly 
earlier than pnow. When the robot makes a pause towards the 
end (before “How about you?”), pnow predicts a potential short 
speech activity from the user, while pfuture seems to favor 

the robot continuing to speak. This can be interpreted as an 
invitation to give a brief response, such as a backchannel. 

Since the VAP model is trained end-to-end on raw audio, 
it is not clear what turn-taking cues it has learned to pick up. 
However, previous work has shown that the model is sensitive 
to subtle prosodic cues [48] and to fillers [49]. While it is also 
possible that the model has learned to pick up certain verbal 
cues, even though there is no explicit speech-to-text objective 
involved, it is not likely that it can make use of more long-term 
pragmatic completion cues (which TurnGPT can). 

While TurnGPT and VAP offer complementary capabilities, 
they cannot be easily combined. The number of conversations 
in the spoken dataset (about 10K) used to train VAP is not 
enough to train an LLM such as TurnGPT (which was trained 
with 385K text-based conversations), and the text datasets 
cannot be used to train a speech model like VAP. We therefore 
propose to use VAP and TurnGPT together, in tandem. 

IV. BASELINE SYSTEM 

To apply the proposed system to HRI, we used the Furhat 
robot [21], a human-like robot head featuring an animated 
face projected onto a semi-translucent mask, along with a 
mechanical neck, as seen in Figure 5. This robot platform 
was selected for its expressiveness, which includes facial 
expressions, lip movements, gaze behavior, and head gestures. 

As a baseline to compare our proposed turn-taking system 
with, we use the standard turn-taking mechanism used in 
the Furhat software. This mechanism is very similar to most 
traditional spoken dialogue systems, including many deployed 
systems [3]. In order to make this version as good as possible, 
given the absence of any turn-taking model, we incorporated 
additional elements, such as gaze aversion and a LED signal, 
to offer turn-taking cues that allow for a more balanced 
comparison with our proposed model. 

A. Baseline Turn-taking Mechanism 

Figure 2 illustrates a turn-shift from user to robot. For Au-
tomatic Speech Recognition (ASR), we use Google’s Speech-
to-Text service. Audio from the microphone is streamed to 
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Fig. 2: Example turn shift from user to robot with the baseline. 

the ASR, which also determines the end-of-speech. Although 
the algorithm behind Google’s end-of-speech detection is not 
documented, it is likely based on a silence threshold, since it 
is fairly constant in length. At the end-of-speech, the speech 
recognition result is used to build a large language model 
(LLM) prompt, which is sent to OpenAI gpt-3.5-turbo, hosted 
by Microsoft Azure. 

The result from the LLM (the robot’s response) is sent to 
the text-to-speech (TTS), and the audio is played back to the 
user. In order to have a human-like robot voice to allow for 
a natural HRI, ElevenLabs1 TTS was used, with the voice 
‘Jennifer’. We used the streaming version of the ElevenLabs 
API, resulting in a fairly constant processing delay (around 
1 s), regardless of the length of the utterance to produce. As 
visible in Figure 2, the total response time (measured from the 
actual point where the user stopped speaking until the robot 
starts speaking) is almost 2.5 s in this example, though it can 
vary depending on the processing delay of the LLM and TTS. 

The standard Furhat software does not support user inter-
ruptions (‘barge-in’). As discussed earlier, allowing for user 
interruptions can easily lead to confusion if not modeled 
appropriately. Thus, in the absence of any turn-taking model 
for the baseline system, we followed this design choice. 
However, to make it clear to the user when the robot was 
listening, similar to [50], we implemented both a gaze aversion 
mechanism (see next section), and used the robot’s LED at 
the base to signal its listening status, turning it red when not 
listening, and off otherwise, as illustrated in Figure 2 and seen 
in Figure 5. This was clearly communicated to the participants 
during evaluation through a demonstration video. 

B. Non-verbal Robot Behavior 

We adopted a gaze aversion strategy as a turn-taking signal 
in which the robot looks at a random diagonal away from the 
user when it starts to generate a response after identifying a 
turn shift, as shown in Figure 2. In addition, we added gaze 
aversion at every pause within the robot’s utterance to signal 
that the turn had not yet been yielded. 

To improve the consistency of the responses, we used 
dynamic facial expressions with an LLM, similar to [51]. At 
the onset of the robot’s speech, numbered anchor points were 
inserted in the text at phrase boundaries. LLM was then asked 

1https://elevenlabs.io/text-to-speech 

to insert suitable facial expressions at each anchor point, based 
on the list of available expressions in the Furhat SDK. This 
was done asynchronously so as not to add any further delays. 

V. PROPOSED TURN-TAKING SYSTEM 

In the proposed system, we use the two general turn-taking 
models described in Section III. The models are trained to 
make predictions as third-party observers of a conversation 
between two speakers. Thus, it is not enough to include these 
models on the input side of the dialogue system, we also need 
to feed the TTS output (audio) back to the VAP model and the 
resulting dialogue history to TurnGPT, as shown in Figure 3. 
This ‘self-monitoring’ is an important new aspect of the 
dialogue system architecture, as traditional spoken dialogue 
systems typically never analyze their own spoken output. 

Since the models are not trained to optimize a certain 
behavior, and we are not fine-tuning the models against some 
domain-specific dataset, but rather use them in a ‘zero-shot’ 
fashion, the behavior of the agent will depend on a number of 
(fairly arbitrary) hyper-parameters. Their current values were 
tuned through four pilot experiments, but they can likely be 
optimized further in future work. The complete pseudo-code 
for the turn-taking algorithm and the values for the hyper-
parameters are given in Appendix A. 

Fig. 3: System architecture. New components in proposed 
system shown in green. 

A. Identifying the End of the User’s Turn 

Figure 1 shows how a user-robot turn shift is handled by 
the proposed system. We use the streaming results from the 
ASR, which are sent to TurnGPT, and the audio from the two 
channels are analyzed by VAP in real time. The output of 
the two models is then used to determine whether the user 
has yielded the turn or not. After the initial “So...”, TurnGPT 
assigns a probability of 0.0 for a turn shift, and the VAP 
model favors the user throughout the long pause. With the 
baseline system, the user would have been interrupted since the 
silence length threshold would have been triggered. TurnGPT 
then continues to assign low turn-shift probabilities until the 
words “favorite” and “movies”, which both constitute potential 
completion points. Here, the VAP model also indicates the 
end of the turn. After both pnow and pfuture have favored the 
user for at least 0.5 s, a turn-shift is allowed (which does not 
necessarily mean that it is ready to speak yet). 

Neither of the models makes perfect predictions. The VAP 
model, for example, sometimes fails to identify turn yielding 
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moments. Thus, even if VAP continues to favor the user, a 
timeout is used to determine when the robot is allowed to 
start speaking, depending on the turn-shift probability from 
TurnGPT, where the maximum timeout was set to 3 s. 

In ideal circumstances, this algorithm allows the user to 
pause for up to 3 s, while the robot may be able to take the 
turn with just 0.5 s response delay. 

B. Preparing a Response 

While the system can respond 0.5 s after the user has 
finished speaking, this is typically not enough time to receive 
the most complete ASR result, as well as the results from the 
LLM and TTS. Similar to how humans manage turn-taking 
[2], [5], [12], the system should start to prepare a tentative 
response before the interlocutor is done speaking. 

While it is possible to start preparing a tentative response for 
each new incremental ASR result, we try to reduce compute 
by only doing this if either the turn-shift probability (according 
to TurnGPT) is 0.2 or higher, or 0.2 s has passed since the 
previous incremental result. This can be seen in Figure 1, 
where the LLM and TTS start to prepare responses after 
the words “So”, “favorite” and “movies”. As soon as a new 
tentative response generation is being initiated, any ongoing 
LLM or TTS requests are canceled. 

In order to avoid generating new tentative responses based 
on very similar input, the current user utterance is also 
compared to the previous user utterance used to generate 
the last tentative response. This comparison is done using a 
sentence embedding model2 comparing the semantic similarity 
between the two user utterances. If it is 0.8 or higher, no new 
response is generated. Using the example from Figure 1, the 
ASR outputs “so”, “so, do you have any favorite”, and “so, 
do you have any favorite movies” are all dissimilar enough 
to warrant new response generation. However, if the user had 
added “so, do you have any favorite movies you like”, the 
similarity would have been sufficient to avoid generating a 
new response. This allows the system to sometimes have a 
response ready within the minimum response time of 0.5 s. 

This processing of incremental ASR results could poten-
tially have been added to the baseline system as well. However, 
without any turn-taking model, this would only have resulted 
in shorter response times in general, with an increased risk of 
interrupting the user. 

C. Handling Interruptions and Backchannels 

As discussed above, handling user interruptions can be 
challenging unless the robot has a turn-taking model that can 
distinguish between genuine interruptions (where the robot 
should stop speaking) and brief backchannels or collaborative 
overlaps (where the robot should continue). This distinction 
has to be made already at the onset of the user’s speech, so 
that the robot can make the decision fast enough. Since the 
VAP model is trained to make predictions about upcoming 
speech activity in conversation, it has learned to make this 

2The ‘all-MiniLM-L6-v2’ model from Sentence Transformers (sbert.net). 

distinction [20], and we therefore added the handling of user 
interruptions to the proposed turn-taking system. 

An example is shown in Figure 4: As the user starts to say 
“oh that is really cool”, the VAP model predicts (both pnow 

and pfuture) that the turn should shift to the user. At this 
point, the robot stops speaking at the next word boundary, 
and the final part of the planned utterance (“... it was such a 
rush”) is never spoken. When the user’s turn ends, the robot 
produces a new response according to the general turn-taking 
scheme. However, when the dialogue history is sent to the 
LLM to generate the next response, the system needs to keep 
track of where it stopped speaking, so that only the parts of 
the utterance that were actually spoken are included in the 
prompt. This also makes it possible for the robot to resume 
speaking the abandoned utterance, if appropriate. 

Figure 4 shows the handling of a user backchannel (“yeah”). 
At this point, pnow favors the user, i.e., the model predicts that 
the user might continue saying something in the near future. 
However, pfuture favors the robot, indicating that whatever the 
user is about to say, it is likely very brief, and the robot should 
continue speaking. Thus, since not both predictions favor the 
user, the robot will continue to speak. 

The VAP model can potentially also be used to predict suit-
able places for the robot to give backchannels [20]. This would 
be places where pnow favors the robot and pfuture favors the 
user. However, we decided not to include backchannels from 
the robot in the version of the system that we evaluated here. 
This is because we do not have a good technique for quickly 
synthesizing backchannels that are appropriate in context and 
coherent with the TTS used for the general robot utterances. 

D. Self-monitoring and Dynamic Gaze Aversion 

In the proposed system, we did not use the LED to signal the 
robot’s turn-taking state, as we aimed to rely solely on more 
human-like turn-taking cues, reflecting the fact that the robot 
was always listening, even when talking. We also adjusted 
the robot’s gaze aversion to be more dynamic, using the VAP 
model. As discussed in Section IV-B, for the baseline version, 
we simply averted the gaze in every pause that the robot made, 
so that it would be clear to the user that the robot is holding 
the turn. However, it is also possible that the TTS already 
expresses this turn-holding cue through its prosody (such as 
a flat pitch), in which case the robot does not need to avert 
the gaze. While we cannot control the prosody of the TTS, the 
VAP model can analyze the robot’s own speech to inform such 
decisions [41]. Figure 1 shows an example of this, where the 
VAP model predicts that the turn is not yielded after “I am a 
huge fan of action movies”, but that it could be ‘accidentally’ 
yielded after “especially ones with epic adventure scenes!”. 
Thus, the robot does not need to avert the gaze in the first 
pause, but should do it in the second pause. 

VI. EVALUATION 

While creating human-level turn-taking systems is the even-
tual goal, speech latencies of current systems (LLM and TTS) 
are not comparable to a human (0.2 s), in addition to humans 
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Fig. 4: Example of a user interruption and backchannel. Fig. 5: The setting for the evaluation, showing 
the red LED lights used in the baseline condi-
tion to indicate that the robot is not listening. 

being better at adapting their conversations (e.g., speaking 
rate, content, style). Thus, comparing the systems to a human 
baseline would introduce confounds, making it difficult to 
isolate the system’s performance. We therefore evaluated the 
turn-taking systems in comparison to each other with a within-
subject design in an HRI study with 39 participants. A 2 
(ordering) x 2 (scenario) design was conducted, where each 
participant consecutively interacted for 7 minutes with both 
systems, each with a different scenario. 

The experiment took 1.5 hours per participant. Participant 
demographics (nationality, gender, age group, and prior ex-
perience with robots) were counterbalanced between the four 
conditions through stratified random assignment to ensure that 
both the order of the system interaction and the scenario 
associated with each system were evenly distributed. 

A. Participants 

A minimum of 0.80 power with medium effect size (f = 
0.25) and α = 0.05 required 34 participants in a 2x2 within-
subject design (calculated by G*Power). Thus, we recruited 39 
native English speakers (power= 0.86) via university channels, 
social media, and word-of-mouth. 

Participants were between 20 and 73 years old (M=40, 
SD=14.3) with no speech or hearing impairments. 24 were 
female, 12 male, and 3 non-binary. 23 had prior experience 
with robots. Further demographics are given in Appendix B. 

Participants signed a consent form for audio and video 
recording, with data-sharing options for anonymity. The study 
was reviewed and endorsed by the university’s research ethics 
and data officers. 

C

B. Scenarios 

onversation topics and cognitive load can impact response 
time, with open-ended questions requiring longer responses 
than yes/no questions [52]–[54]. To assess if both systems 
can handle long pauses or hesitations in speech, we used 
two ethical dilemmas that required participants to think and 
increased cognitive load by asking personal questions. 

The dilemmas included: (1) a human-centered dilemma on 
the ethics of lying (with the robot named Alice) and (2) a 

robot-centered dilemma based on Asimov’s Laws, addressing 
disobedience and privacy (named Clara). These scenarios 
balanced human and robot contexts to account for participants’ 
willingness or reluctance to share personal information with 
robots and the participants’ (un)familiarity with robots. 

For both dilemmas, 10 example questions were written in 
the LLM prompt, e.g., Alice: “What if telling the truth might 
hurt someone’s feelings, like commenting on their appear-
ance?” and Clara: “Should I override commands in emergency 
situations or when the command could cause harm?”. The 
LLM was instructed to follow up with questions to maintain 
the conversation. In the human-focused dilemma, the LLM en-
couraged sharing personal memories, while the robot-focused 
scenario avoided extra cognitive load since situations involving 
robots may be unfamiliar due to the lack of robots in everyday 
life. The LLM was also prompted to respond briefly in an 
approachable and friendly style. LLM prompts are provided 
in Appendix C. 

C. Procedure 

Participants were informed they would interact with the 
robot twice, for 7 minutes each, with robots having a dif-
ferent interaction style and topic. The interaction styles were 
explained before each interaction: 

• Proposed: “You can talk with this robot as if you would 
talk to a human. You can interrupt the robot anytime.” 

• Baseline: “This robot has a red light underneath to signal 
that it is not listening. You will not be able to interrupt 
it while it is on. So, only speak when there is no light.” 

Demonstration: Before each interaction, participants were 
also shown a 1-minute demonstration video, featuring an 
ethical dilemma on the ‘uncanny valley’. For the proposed 
system, the researcher in the video demonstrated that it was 
possible to interrupt the robot and that it was possible to 
make longer pauses. For the baseline system, the researcher 
demonstrated that it was not possible to interrupt the robot 
while the red light was on and that longer pauses could result 
in the robot interrupting them. 

Interaction: To avoid the need for echo cancellation and 
to get a clear recording, a headset with a close-talking mi-
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TABLE I: Response times and interruption rates. 

Response time (s) Interruption 
Mean Median Mode rate

Proposed 1.5 1.5 0.6 6.9% 
Baseline 2.2 2.7 2.6 16.6% 
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Fig. 6: Histogram of response times. 

crophone was used for interaction (Figure 5). The interaction 
began with a pre-scripted greeting and ended after 7 minutes 
with a pre-scripted closure. The rest of the interaction was 
fully autonomous, with responses generated by the LLM. The 
researcher was not in the room. 

Questionnaire: After each interaction, the participants filled 
out a questionnaire with Likert scale questions, ranging from 
1 (strongly disagree) to 7 (strongly agree). The questionnaire 
was developed based on the HRI and HCI literature [50], [55], 
[56], with sections for (A) conversational dynamics (Figure 7), 
(B) user enjoyment, (C) privacy and ethical concerns, and 
(D) additional (open-ended) feedback. Only conversational 
dynamics questions are analyzed and reported in this paper. 
Each section also included a robot preference question and an 
open-ended question on the reasoning behind their preference. 

Annotation: It is challenging to automatically identify inter-
ruptions, since they are subjective in nature [57]. Therefore, 
an annotation system was developed to evaluate them from the 
participant’s perspective, after interacting with the robot. The 
interface was similar to the top part of Figure 4, with only 
user audio (in orange) and robot audio (in blue), where the 
participant could play back the dialogue audio and mark in-
terruptions. Participants were asked to annotate when they felt 
the robot “did not let them speak”. They marked interruptions 
(either the robot speaking over them or them stopping speaking 
- due to red light) but were instructed not to mark backchannels 
or natural transitions if they did not feel interrupted. 

Debriefing: After the study, the participants were briefed in 
more detail about the study and the robot, and received a copy 
of their consent form and a gift card (equivalent to $20). 

VII. RESULTS 

A. Response Time and Interruption Rate 

Two commonly used metrics to assess turn-taking perfor-
mance in conversational systems are response time (or ‘gap 
length’, ’floor transfer offset’) and interruption rate (or ‘cut-
in rate’) [13], [24], [58]. Response time measures the time 
interval between the user’s completion of a turn and the sys-
tem’s response, when there is no interruption. Interruption rate 
represents the proportion of system turns that interrupt the user 

while they are speaking. These metrics often involve a trade-
off, particularly when a silence threshold is used: reducing 
the response time tends to increase the interruption rate, as 
the system may take over during a user’s pause. To calculate 
these metrics, we automatically identified turns and turn shifts 
in the dialogue, classifying system turns as interruptions or 
non-interruptions based on the manual annotations provided 
by the participants. Response time was determined from the 
recordings by measuring the time between when the user 
stopped speaking and the onset of the robot’s speech. 

A histogram of response times is shown in Figure 6 and 
summary statistics in Table I. The median response time for 
the proposed system is much shorter (1.5 s vs 2.7 s; Wilcoxon 
signed-rank test; W = 776; p < 0.001). For the baseline, there 
is a peak at 2.6 s, which is close to the expected response 
time, given a silence threshold of 1 s, LLM response time 
of 0.5 s, and a TTS delay of 1 s. There are also instances 
of shorter response times (even a few negative ones), which 
might intuitively seem impossible to achieve with the baseline 
system. However, at a closer look, these constitute instances 
where the system has detected the end-of-turn and started 
to generate a response, but where the user still continues to 
speak for a bit. While these instances might, in many cases, 
be marked as interruptions (and would thus be excluded from 
the response time statistics), there are clearly also cases where 
they are not perceived as interruptions. 

For the proposed system, there is a peak at 0.6 s, which 
is close to the minimum allowed response time of 0.5 s. 
If the system has a response prepared and either VAP or 
TurnGPT predicts that the turn is yielded, it can in many cases 
achieve this fast response time. Of course, there are also many 
instances where this is not the case, for example, where the 
VAP model did not detect a turn yield but where one of the 
longer TurnGPT fallback thresholds were used instead. Also, 
since it takes around 1.5 s to generate a response (LLM+TTS), 
there are likely many instances where the system predicts a 
turn yield, but where a response is not yet ready. In fact, the 
histogram has a second peak around this time. If faster LLM 
and TTS models are used, this response time can be improved 
further. A third peak in the histogram can be seen around 3 s, 
which is the maximum response time allowed if both VAP and 
TurnGPT fail to detect any turn yield. Thus, there is clearly 
some room for further improvement of these models. 

While the proposed system had a much shorter response 
time, it also had a substantially lower interruption rate 
(Wilcoxon signed-rank test; W = 601; p < 0.001), as shown 
in Table I. This indicates that the proposed system is much 
better at distinguishing pauses where the user is holding the 
turn from signals to yield the turn. 

B. Questionnaire 

The users’ ratings for the turn-taking related questions in the 
questionnaire, before and after listening to the interaction, are 
shown in Figure 7. A reliability analysis yielded a Cronbach’s 
alpha of 0.8 across the 7 items, suggesting that they reliably 
measure a cohesive construct related to turn-taking behavior. 
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Fig. 7: Answers to the questionnaire. Significance levels in-
dicate Bonferroni-corrected Wilcoxon signed-rank tests (∗ p < 
0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.). See Appendix D for details. 

For Q1-Q7, a Wilcoxon signed-ranked test was conducted 
to compare the two conditions, using Bonferroni correction. 
The users rated the proposed system as more fluent, more 
human-like, less prone to interrupt, more interruptable, and 
requiring less effort, compared to the baseline. The only 
question which did not have a significant difference was the 
perceived response delay (“The robot was slow to respond”), 
which is interesting given that the proposed system objectively 
often had much shorter response delays. 

As shown in Figure 7, there was a significantly strong 
preference for the proposed system (Q8: p < 0.001), although 
9 out of the 39 participants indicated a preference for the 
baseline and 3 had no preference. The proposed model was 
preferred due to better flow and more natural, human-like 
conversations, as reported in open-ended responses (22 vs. 4). 
Complaints about the baseline included less time to speak and 
a greater need to rush responses (14), distracting red light (4), 
more interruptions (8 vs. 2 for the baseline), and interruptions 
being stressful (6). However, some preferred the baseline since 
the red light helped pace the conversation (6), and it felt more 
natural to be interrupted (3). 

We also compared all ratings across the two scenarios (Clara 
vs. Alice) and the order of the interactions using a Wilcoxon 
test, showing no significant effects of these factors. 

VIII. DISCUSSION 

Overall, the general models seem to be good at distinguish-
ing turn-holding and turn-yielding cues from the participants. 
This is quite impressive, given that the VAP model had 
been trained on telephone human-human dialogue and not 
on face-to-face human-robot interactions. It is likely that the 
predictions would be even better if the data came from a more 
similar setting. The recorded videos indicate that it would be 
beneficial to utilize the user’s gaze or other visual cues as input 
to the model to determine user’s willingness to take or yield 
the turn. Recent work has shown the feasibility of including 
such cues for VAP [26]. In addition, for many HRI settings, 
multi-party interaction is important, and while domain-specific 
multi-party turn-taking models have been developed [16], [29], 

there does not exist any general multi-party models, trained 
and applied in a similar way as in this paper. 

To achieve fast response times, it is not enough to have 
a turn-taking model that can determine when the robot is 
allowed to speak, it must also have something ready to say, 
which is limited by the processing time of the LLM and TTS. 
Thus, to further reduce response delays, various techniques can 
be explored to prepare responses ahead of time. In this paper, 
we proposed a novel but simple strategy where the semantic 
similarity of the incremental ASR results are compared to 
decide when new responses need to be generated. Another 
extension would be to project how the user’s utterances are 
likely to unfold. For this, TurnGPT can be used to roll out 
different potential futures [19], [58]. Another option is to 
produce fillers or other non-committing response prefixes [59]. 

The scenarios used in our evaluation were selected because 
they are challenging from a turn-taking perspective, due to 
long pauses. However, it would also be interesting to evaluate 
other HRI scenarios where the user has more initiative. The 
fact that the robot had most of the initiative could help explain 
why the participants did not perceive the baseline as being 
particularly slow to respond, as it might seem natural to take 
some time to come up with the next question. 

Some users still preferred the baseline, partly mentioning 
the LED light as a positive factor (while others found it dis-
tracting). Considering individual preferences will be important 
for future work. A combination of these features could also 
be a solution, such as the proposed system with the LED light 
(or other non-humanlike cues). 

IX. CONCLUSION 

We have presented, to our knowledge, the first HRI system 
and user study that involves general, continuous turn-taking 
models accounting for both verbal and acoustic turn-taking 
cues. The models are general, in that they have been trained 
in a self-supervised fashion (i.e., without any additional an-
notations) on human-human dialogue data. The models are 
continuous, in that they make predictions at every timestep, 
accounting for temporal aspects such as pause length. Another 
novel aspect is that the models are based on self-monitoring, 
which means that the robot’s own speech provides context 
for identifying turn-taking events. We presented an algorithm 
of how these models can be used in an HRI system, with a 
few tunable hyper-parameters. Our study with 39 participants 
showed that, compared to a more traditional baseline system, 
using a fixed silence threshold and explicit turn-taking cues in 
the form of an LED, the proposed system significantly reduces 
both response delays and interruption rate. Participants also 
expressed a significant preference for our system. 
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