
This is the author’s accepted manuscript. The final published version of this work (the version of record) is published in Companion of
the 2021 ACM/IEEE International Conference on Human-Robot Interaction (HRI ’21 Companion), March 8-12, 2020 (virtual), available at
DOI: 10.1145/3434074.3444881. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable
terms of use of the publisher.



Lifelong Learning and Personalization in Long-Term
Human-Robot Interaction (LEAP-HRI)

Bahar Irfan
bahar.irfan@plymouth.ac.uk
University of Plymouth, UK

Aditi Ramachandran
aditi@myvanrobot.com

Van Robotics, USA

Samuel Spaulding
samuelsp@media.mit.edu
MIT Media Lab, USA

Sinan Kalkan
skalkan@ceng.metu.edu.tr

Middle East Technical University
(METU), Turkey

German I. Parisi
parisi@informatik.uni-hamburg.de
University of Hamburg, Germany

Hatice Gunes
Hatice.Gunes@cl.cam.ac.uk
University of Cambridge, UK

ABSTRACT
While most of the research in Human-Robot Interaction (HRI) fo-
cuses on short-term interactions, long-term interactions require
bolder developments and a substantial amount of resources, espe-
cially if the robots are deployed in the wild. Robots need to incre-
mentally learn new concepts or abilities in a lifelong fashion to
adapt their behaviors within new situations and personalize their
interactions with users to maintain their interest and engagement.
The “Lifelong Learning and Personalization in Long-Term Human-
Robot Interaction (LEAP-HRI)1” Workshop aims to take a leap
from the traditional HRI approaches towards addressing the devel-
opments and challenges in these areas and create a medium for
researchers to share their work in progress, present preliminary
results, learn from the experience of invited researchers and discuss
relevant topics. The workshop extends the topics covered in the
“Personalization in Long-Term Human-Robot Interaction (PLOT-
HRI)2” Workshop [12] at the 2019 14th ACM/IEEE International
Conference on Human-Robot Interaction (HRI) and “Lifelong Learn-
ing for Long-term Human-Robot Interaction (LL4LHRI)3” Work-
shop at the 29th IEEE International Symposium on Robot and Hu-
man Interactive Communication (RO-MAN), and focuses on studies
on lifelong learning and adaptivity to users, context, environment,
and tasks in long-term interactions in a variety of fields (e.g., edu-
cation, rehabilitation, elderly care, collaborative tasks, customer-
oriented service and companion robots).

CCS CONCEPTS
•Computer systems organization→Robotics; • Information
systems → Personalization; • Computing methodologies →
Lifelong machine learning.

1The website of LEAP-HRI Workshop: https://leap-hri.github.io/
2The website of PLOT-HRI Workshop: https://longtermpersonalizationhri.github.io/
3The website of LL4LHRI Workshop: https://sites.google.com/view/ll4lhri2020/
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1 INTRODUCTION
Social robots should be able to operate in highly challenging en-
vironments populated with complex objects and in social settings
involving humans, animals, and other robots. Despite these chal-
lenges, we expect these robots to be mindful towards us while
executing their tasks, demonstrating adaptive behaviors. Consider
a robot that is vacuuming while a person is reading a newspaper.
When given negative feedback in this situation, the robot should
be able to identify this as a new context, and thereon adapt its
behaviors accordingly in similar spatial or social contexts - e.g.,
when people are watching TV, the robot should be able to link this
situation to the previously experienced one and avoid vacuuming.

Conventional learning approaches do not scale well with the
dynamic nature of such real-world interactions as they require
samples from stationary data and situations. The real-world is not
stationary, it changes continuously. In such contexts, sensor data
and learning objectives may also change rapidly. Lifelong learning
and personalization aims to address this challenging problem in
human-robot interaction by learning incrementally and facilitating
the learning of new concepts, situations, and abilities over time [4].

In light of this, “Lifelong Learning and Personalization in Long-
Term Human-Robot Interaction (LEAP-HRI)” Workshop aims to
bring together a multidisciplinary group of researchers to identify
and address key challenges for studying lifelong learning and per-
sonalization and its relevant aspects for social robotics in both lab
and field. More specifically, the workshop aims (i) to bring forth ex-
isting efforts and major accomplishments in long-term and lifelong
learning that can potentially be used for HRI and social robotics,
(ii) while encouraging the design of novel models, datasets, tools
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and applications in the context of long-term human-robot interac-
tion and adaptation, and (iii) to focus on current trends and future
directions in this area.

2 BACKGROUND
Humans excel at continuously learning new skills and knowl-
edge across a lifespan. The ability to incrementally acquire, refine,
and transfer knowledge over sustained periods of time drives the
experience-driven specialization of perceptual and motor skills.
Artificial agents and robots in the real world are required to contin-
ually learn from novel experience to trigger behaviourally relevant
decisions in a changing environment [18, 22, 28]. Lifelong learning
models aim to reflect a number of properties of biological systems
and their ability to adapt over time with dedicated mechanisms that
facilitate learning from novel input while protecting consolidated
memories (e.g., [17, 19, 20]). Despite significant advances, current
models of lifelong learning are still far from providing the flexibility,
robustness, and scalability exhibited by biological systems. Impor-
tantly, in HRI, it is unclear how agents and robots can effectively
and efficiently learn from extended interactions with the environ-
ment. For instance, the creation of closed-loop dynamics and social
interactions with humans require robots to continually adapt to-
wards their users’ behaviours, their affective states andmoods while
keeping people engaged in the task they are performing [4].

Humans are individuals with different needs, preferences, and
personalities. Thus, adaptable systems that recognize users, learn
from them and personalize their behaviors are essential and integral
for interactions over extended durations [6]. Moreover, personaliza-
tion brings in a variety of crucial benefits for long-term interactions
within real-world applications, such as eliciting and improving user
engagement and experience, increasing perceived familiarity, trust
and sociability, and improving task performance, in education (e.g.,
[1, 9, 13, 16, 21]), healthcare and therapy (e.g., [5, 10, 23, 25, 27]),
retail and customer service (e.g., [8, 11, 14, 15]), and domestic ap-
plications (e.g., [7, 24, 26]).

Conventional machine learning approaches do not scale well to
the dynamic nature of such real-world sensory data and interac-
tions as they require samples from stationary data distributions.
Furthermore, the complexity of the datasets used for the evaluation
of lifelong learning tasks is very limited (e.g., [3]) and does not
reflect the richness and level of uncertainty of the stimuli that artifi-
cial agents can be exposed to in the real world. Thus, novel datasets,
benchmarks, and protocols are required to evaluate long-term learn-
ing and personalization in HRI scenarios (e.g., [17, 29]). In addition
to designing and properly evaluating lifelong learning approaches,
one must consider the philosophical, ethical, and legal implications
of lifelong learning agents [2]. This workshop proposes a forum for
inspirational and technical discussions to foster a leap of paradigm
in long-term learning and personalization.

3 WORKSHOP OVERVIEW
LEAP-HRIWorkshop is a half dayworkshop on the topics of lifelong
learning and personalization in long-term HRI. The workshop will
consist of:

• Keynotes: Invited researchersMichelle Zhou (Juji Inc., USA)
and Oliver Lemon (Heriot-Watt University, UK) will present
their experiences and perspectives on the topic.

• Full talks: The authors of the accepted research papers
of full length (3-4 pages) will give 7-minute presentations
followed by a 3-minute question session.

• Video/demonstration session:Accepted videos and demon-
strations that are maximum 3 minutes in length, will be
shown during this session.

• Panel: A panel will be organized with leading researchers in
HRI and Human-Computer Interaction (HCI) on the topics
of interest, namely, Iolanda Leite (KTH Royal Institute of
Technology, Sweden), Alessandra Sciutti (Istituto Italiano di
Tecnologia, Italy), Ognjen Rudovic (MIT Media Lab, USA)
and Cristina Conati (University of British Columbia, Canada),
to discuss the key challenges and advancements in these
areas. The questions from the audience and organizers will
be taken prior to the panel, as well as during the panel.

• Break-out session: Theworkshop attendees will be divided
into groups of 4-5 after the panel to follow up on the discus-
sions.

3.1 Target Audience and Approach for
Recruiting Participants

We invite papers of 3-4 pages (plus additional pages for references
and appendices), including work in progress containing prelim-
inary results, technical reports, case studies, surveys and state-
of-the-art research in lifelong learning and personalization in a
variety of fields (e.g., education, rehabilitation, elderly care, collabo-
rative tasks, customer-oriented service and companion robots) and
long-term studies. Additionally, we invite video and demonstration
submissions of 3 minutes maximum, that are related to the topics
of this workshop, and may showcase work, describe conceptual
designs and prototypes for innovative ideas for long-term interac-
tions or contain videos from experiments. Papers will be reviewed
for their relevance, novelty, and scientific and technical soundness.
Similarly, video and demonstration submissions will be reviewed
for relevance, novelty, impact and appeal of the presentation. The
submissions will be asked to follow the guidelines established by
HRI2021. Researchers from HRI, robotics, cognitive science, rehabil-
itation and educational backgrounds are invited to contribute. The
workshop will be announced through a dedicated website, a call
for papers on robotics mailing lists and on social network channels
(Facebook, Twitter, LinkedIn).

3.2 Plan for Documenting the Workshop
The accepted papers will be published on the workshop website, as
well as in arXiv. The proceedings may be made as a single submis-
sion, or as a set of individual papers with an index submission. The
extended versions of selected papers will be invited for submission
to the Frontiers in Robotics and AI research topic “Lifelong Learn-
ing and Long-Term Human-Robot Interaction4”, which is edited by
a subset of the organizing team (H. Gunes, S. Kalkan, G. I. Parisi)
and I. Leite (granted approval).
4https://www.frontiersin.org/research-topics/14495/lifelong-learning-and-long-
term-human-robot-interaction
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3.3 List of Topics
Topics of interest include but are not limited to:

• Lifelong personalization and/or adaptation
• Modelling user(s) and/or user behavior(s) in multi-session/long-
term HRI

• Modelling robot behavior in multi-session/long-term HRI
• Modelling context in multi-session/long-term HRI
• Agent/robot architectures for personalization/adaptation
• Lifelong (long-term) human-agent or multi-user/multi-agent
interactions

• Lifelong (long-term) multimodal interactions
• Continual/lifelong machine learning
• Long-term memory (episodic, semantic, associative)
• Long-term HRI studies
• Development concerns, including deployment, scalability and
complexity

• Tools and testbeds for evaluation of multi-session/long-term
HRI

• Methodological challenges for achieving successful long-term
HRI

• Metrics for evaluating long-term/lifelong HRI
• Deployed and/or emerging applications for long-term HRI
• Alternative approaches (e.g. interactive program repair)
• Philosophical, legal and ethical considerations in long-term HRI

4 ORGANIZERS
Bahar Irfan, University of Plymouth, UK. Bahar Irfan is an Early-
Stage Researcher and a PhD candidate at the Centre for Robotics
and Neural Systems, University of Plymouth and SoftBank Ro-
botics Europe, France, in the joint Marie Skłodowska-Curie ITN
project APRIL. Her work focuses on multi-modal personalization
in long-term human-robot interaction, which involves incremental
and online learning of users, their behaviours and preferences in
customer-oriented service and socially assistive robotics domains.

Aditi Ramachandran, Vän Robotics, USA. Aditi Ramachandran is
the Chief Technology Officer at Van Robotics where she works on
building educational robots and oversees all software development
at the company. She received a PhD from the Social Robotics Lab at
Yale University where her research focused on personalized social
robot tutors for children.

Samuel Spaulding, MIT Media Lab, USA. Samuel Spaulding is a
PhD student in the Personal Robots Group at the MIT Media Lab.
His thesis research is focusing on building robots that can learn
personalized cognitive and affective models of users over repeated
interactions across different tasks.

Sinan Kalkan, Middle East Technical University (METU), Turkey.
Dr. Kalkan received his Ph.D. degree from University of Göttingen,
Germany and afterwards joined the Dept. of Computer Engineer-
ing, METU as a faculty member. Dr. Kalkan’s research interests in
robotics include context modeling and life-long learning. His 2016
paper on the subject has received the Outstanding Paper Award

by the IEEE Transactions on Cognitive and Developmental Sys-
tems in 2019. Dr. Kalkan has served as the program chair for the
17th International Conference on Advanced Robotics (ICAR2015),
co-organized the Lifelong Learning for Long-term HRI workshop
at Ro-Man2020, and he is one of the founders and counsel board
members of the Turkish Robotics Conferences.

German I. Parisi, University of Hamburg, Germany. German I.
Parisi is postdoctoral research affiliate of the University of Ham-
burg, Germany, and the Director of Applied AI at McD Tech Labs in
Mountain View, California, a Silicon Valley-based research centre
established by McDonald’s Corporation. He is also the co-founder
of ContinualAI, the largest research organization on continual learn-
ing for AI. In 2017 he received his PhD in Computer Science from
the University of Hamburg. In 2015 he was a visiting researcher
at the Cognitive Neuro-Robotics Lab of the Korea Advanced Insti-
tute of Science and Technology (KAIST), South Korea, winners of
the 2015 DARPA Robotics Challenge. His main research interests
include human-robot interaction, continual/lifelong learning, and
multisensory integration.

Hatice Gunes, University of Cambridge, UK. Dr. Gunes is a Reader
in Affective Intelligence and Robotics (AFAR) and the Director of
the AFAR Lab at the University of Cambridge. Her expertise is
in the areas of affective computing and social signal processing
cross-fertilizing research in multimodal interaction, computer vi-
sion, machine learning and social robotics. She has published over
100 papers in these areas (H-index=32, citations > 5,000) and her re-
search highlights include Best Paper Candidate at IEEE RO-MAN’20,
Outstanding Paper Award at IEEE FG’11 and Best Demo Award at
IEEE ACII’09. Dr Gunes is the former President of the Association
for the Advancement of Affective Computing, the General Co-Chair
of ACII 2019, and the Program Co-Chair of ACM/IEEE HRI 2020
and IEEE FG 2017.
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