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ABSTRACT
Real-world studies allow for testing the limits of HRI systems and
observing how people react to failures. We developed a fully au-
tonomous personalised barista robot and deployed the robot on
an international student campus for five days. We experienced
several challenges, the most important one being speech recog-
nition failures due to foreign accents. Nonetheless, these failures
showed a different perspective on HRI, and we demonstrate how
personalisation can overcome a negative user experience.
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1 INTRODUCTION
Deploying autonomous robots in the real-world adds several chal-
lenges, such as incomplete data and dropouts, decreasing the suc-
cess rate of the interaction [3]. Nonetheless, such studies are neces-
sary to create reliable systems for long-term interactions. Moreover,
user experience can decrease over time if the robot uses a fixed set
of behaviours, which can be overcome by personalisation [5].

There are only a few studies [2, 7, 9] that explored fully au-
tonomous personalisation in dialogue for long-term HRI. However,
none of these studies were conducted in the real-world.

We designed a study to analyse the effects of personalisation in a
real-world application using a barista robot which recalls the user’s
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Figure 1: (a) Experiment setup with Adapted Pepper, (b) ex-
ternal camera image, (c) internal camera image.

previous orders in subsequent interactions, similar to a barista in a
local coffee shop. Hence, we developed a fully autonomous robot
with user recognition, automated speech recognition (ASR) and a
rule-based dialogue management system (RBDMS). During the real-
world study, we faced several failures that greatly affected the user
experience. However, personalisation mitigated interaction failures
and the negative user experience. In this paper we describe our
system and study, and focus on the challenges suggesting solutions
to overcome them in the future.

2 METHODOLOGY
2.1 Rule-Based Dialogue Management System
The RBDMS ismodelled on a real-world barista who: (1) requests the
drink order, (2) size, (3) snacks, (4) confirms the order, (5) changes
the order if necessary, (6) takes the customer’s name, (7) notes the
order pick up location, (8) says goodbye. Typically, a customer can
ask for the order in one sentence, removing the need of (2) and
(3), however, we separated the steps to reduce the errors and aid
speech recognition. Template-matching and dialogue state tracking
are used to match the user responses to the phrases in the RBDMS.

2.2 Personalisation
Multi-modal incremental Bayesian Network [4] (MMIBN) is used
for online user recognition. MMIBN combines face recognition with
soft biometrics (age, gender, height and time of interaction)1 for
reliable identification.

The interaction is personalised by recalling the most frequent
or recent order in the database, which is suggested to the user, e.g.,
1Obtained from NAOqi: http://doc.aldebaran.com/2-5/
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"Hello, Jane! Would you like to have a large coffee and a chocolate
cookie again?". The user can accept or change the order. If the user is
incorrectly identified, the name is requested, and the corresponding
most frequent order is suggested. If the user is new, the interaction
is pursued as described in Sec. 2.1. At the end of the interaction, the
robot updates the database with the order and adds the new user.

2.3 Speech Recognition
We used Adapted Pepper robot2 (shown in Figure 1), which has an
improved microphone system with lower noise compared to an
off-the-shelf robot. We used NAOqi voice activity detection and
Google Cloud Speech-to-Text for online speech recognition.

Speech recognition was optimised with a band-pass filter based
on 5 monologues from personalised barista phrases with 12 non-
native English speakers, providing an exact match accuracy of 47%
and an error (1-BLEU score) of 0.34.

2.4 Real-World Experiment
We conducted a 5 day study in the coffee bar of an international
student campus, Cité Internationale Universitaire de Paris, with 18
non-native English speakers (11M, 7 F) within the age range of 22-47
(M=28.2, SD=7.0). The study had three conditions: enrolment (EC),
non-personalisation (NPC), personalisation (PC). EC and NPC have
the same structure described in Sec. 2.1; EC is the first interaction
with users, whereas NPC depicts the second and third interactions.
PC is the corresponding (as in Sec. 2.2) condition to NPC.

The perceived performance of the robot and the experience of the
users are evaluated through a questionnaire. The speech recognition
performance is analysed, and the reactions of the participants are
evaluated through the robot camera and an external camera3.

3 RESULTS AND DISCUSSION
Due to the technical difficulties further outlined in this section,
only 5 out of 18 EC, 4 out of 6 NPC, 3 out of 9 PC interactions were
successful (i.e., completed and correct order was delivered). We did
not interfere with the experiment unless the robot was stuck at a
phrase for a prolonged time or had an apparent connection failure,
in which case, we asked if the participant would like to repeat the
interaction. Due to the low number of subsequent encounters, the
resulting Bayes factors are between 0.3-3, suggesting inconclusive
statistical significance between conditions [6], thus, we interpret
the implications of the trends in the results.

The results in Figure 2 support that a higher percentage of users
received the correct order and had more complete interactions in
NPC. However, in PC, a higher percentage of users enjoyed the
interaction, looked forward to the next one, and preferred to interact
with the robot as a barista in a coffee shop. These findings suggest
that personalisation can improve the negative experience of users,
which is a key result of conducting a real-world study.

The primary cause of failure was speech recognition, necessi-
tating users to repeat phrases. The underlying reasons are foreign
accents of non-native speakers, latency due to connection prob-
lems, quietly speaking users, user’s distance from the robot, and

2Created for MuMMER project: http://mummer-project.eu.
3Participants signed consent forms under the University of Plymouth ethical approval
for audio and video recording and image sharing.
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Figure 2: User questionnaire results.

the accuracy of the ASR on the audio obtained from the robot’s
microphones.

The second major problem was the fixed order structure of RB-
DMS. The system failed to understand when the user ordered the
items in a combined sentence, switched the order of items, or con-
firmed the order first and then tried to change the order later.

The users did not realise when the robot incorrectly identified
them, thus, online learning in MMIBN and RBDMS updated the
wrong user, thereby, causing PC to have a worse success rate.

4 SUGGESTIONS FOR REAL-WORLD STUDIES
These technical difficulties caused the participants to repeat their
phrases several times, change their wording, and even accept wrong
orders, but these are unlikely to happen in the real-world when the
customers are in a hurry. For deploying robots to the real-world,
we need solutions that are reliable and can recover from failures.

Our results showed that ASR is not accurate enough for real-
world applications, hence, a touchscreen interface for text or image-
based interaction can be used. However, such methods decrease
the naturalness of the interaction. Thus, it is preferable to improve
the accuracy of ASR, by constraining grammar [8], ensuring a
reliable WiFi or using an onboard ASR, and using high-quality
microphones. LowASR accuracy in foreign accents can be overcome
by personalising the interaction with the user’s native language.

We should also account for user errors by designing systems
that are flexible and robust. For example, confirming the identity
before the order can overcome errors in online learning for MMIBN.
Moreover, a neural network with a long-term memory would be
more suitable than a rule-based dialogue management system for
reverting changes in the state of the dialogue [1]. We are developing
such a system for personalised interactions.

Nevertheless, failures enabled us to observe the high positive
impact of personalisation on the negative user experience, which
showed the importance of evaluating technologies outside of con-
trolled environments and studying how people respond to failures.
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